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Abstract The kinetics of a A1 + A2 → A1 A2 reaction on supported catalysts is
investigated numerically using a phenomenological model which includes: the bulk
diffusion of reactants from a bounded vessel towards the adsorbent and the product bulk
one into the same vessel, adsorption and desorption of reactants molecules, and surface
diffusion of adsorbed particles. The model is based on the Langmuir–Hinshelwood
surface reaction mechanism coupled with the Eley–Rideal step. The model based
only on the Langmuir–Hinshelwood mechanism is also studied. Simulations were
performed using the finite difference technique. Three cases of reactants adsorption
are considered: each reactant can adsorb on the active in reaction catalyst surface
and inactive support, one of reactants adsorbs on the catalyst surface while the other
one adsorbs on the support, both reactants adsorb only on the support. The surface
diffusion and catalytic surface size influence on the catalytic reactivity of a supported
catalyst is studied.

Keywords Heterogeneous reactions · Adsorption · Desorption ·
Surface diffusion · Spillover

1 Introduction

Heterogeneous catalytic reactions constitute around 90 % of all processes in the chemi-
cal industry [1]. Modelling of catalytic processes plays a central role in study of kinetics
in heterogeneous catalysis and catalysts design in chemical industry [1–5]. The rate
constants of kinetic processes are usually obtained either from single crystal studies
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or experimentally from real catalysts [6]. The latter consist of small active catalyst
particles placed on inactive in reaction supports. One of kinetic effects associated with
small catalyst particles on a support is the spillover effect. Spillover is an effect accom-
panying heterogeneous surface reactions when inactive in reactions surface regions
significantly influence the kinetics of the overall catalytic process [7]. It is caused by
the fact that parts of the surface which are inactive in the surface reaction can be active
for other processes that occur during the catalytic process, i.e. adsorption–desorption
process and increase or decrease concentrations of either substrate or product particles
on active parts of the surface through the diffusion of the adsorbed reactant particles
across the interface between the catalyst particles and the support [1,7,8]. The term
“spillover” originally was used only for diffusion from active in reaction particles
onto a support, whereas the diffusion in reverse direction is called “reverse-spillover”
[4,9–11]. In the present paper the term spillover will be used for diffusion in both
directions. The spillover effect is observed and plays a key role in catalytic reactions
on supported metal catalysts [4,9]. The bibliography of the current state of theoreti-
cal research of reactions with spillover effects include: experimental works [12–19],
papers based on the Monte Carlo simulations technique [7,9,20,21], numerical solv-
ing of mean-field models [22–25], and the analytical description of such effect [2,6].
In [20], the uni-molecular A → B and bimolecular 2A → B reversible reactions are
studied on heterogeneous surfaces consisting of active and inactive in reaction sites.

In [7,9,21], the three-molecular 2A + B2 → 2AB reaction which models the CO
oxidation on Pd/Al_2O_3 heterogeneous catalyst, is studied. In [22,23], these reac-
tions are studied numerically by using mean-field equations for the steady-state case.
The long-range surface diffusion influence on the uni-molecular reactions proceed-
ing on the heterogeneous catalysts is studied numerically in [24,25]. Under some
restrictions on rate constants and ratio of reactants pressures authors of [2] derived
approximate analytical formulas to describe dynamics of 2A + B2 → 2AB reac-
tion with spillover effect. Using analytical methods and scaling concepts a model for
steady-state uni-molecular reactions on supported catalysts including reactant adsorp-
tion, desorption, and diffusion of adsorbed particles is examined in [1].

In this paper, by employing a mean-field model and its numerical simulations we
consider a monomer–monomer heterogeneous reaction, A1 + A2 → B, B = A1 A2,
on a supported (composite) catalyst taking into account: the bulk diffusion of both
reactants from a bounded vessel with an impermeable boundary toward the adsorbent
and the reaction product bulk one from the adsorbent into the same vessel, adsorption,
desorption, and surface diffusion of adsorbed particles of each reactant. The model is
based on the Langmuir–Hinshelwood surface reaction mechanism coupled with the
Eley–Rideal step. In particular, the model based only on the Langmuir–Hinshelwood
mechanism is studied. Adsorption, desorption, and surface diffusion are allowed to
proceed at a constant temperature and the product desorption is assumed to be instan-
taneous. We consider three adsorption cases of reactants A1 and A2: (i) each reactant
can adsorb on both active catalyst particle and inactive support, (ii) one of reactants
A1 and A2 adsorbs on the catalyst particle while the other one adsorbs on the inactive
in reaction support, (iii) both reactants adsorb only on the inactive support. The goal
of this paper is a numerical study of the surface diffusion and catalytic particle size
influence on the catalytic reactivity of supported catalysts.
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The paper is organized as follows. In Sect. 2 we present the model. In Sect. 3
we discuss numerical results. A summary of main results in Sect. 4 concludes the
paper.

2 The model

To study the problem of two-molecular catalytic heterogeneous reaction, A1 + A2 →
B, proceeding on a supported catalyst we use a mean-field approach. Assume that
reactants A1, A2 and product B = A1 A2 of concentrations a1(t, x), a2(t, x), and
b(t, x) occupy a bounded domain Ω = {x = (x1, x2, x3) : xi ∈ [0, l], i = 1, 2, 3}
with boundary S̃ = S1∪S2, where S2 = {x = (x1, x2, x3) : xi ∈ [0, l], i = 1, 3, x2 =
0} and S1 = S̃ \ S2. Here t is time, x is a position, S2 is the surface of the adsorbent,
and S1 is a surface impermeable to the reactants and product. Obviously, x2 > 0 for
S1. Let s2(x) and s1(x), x = (x1, x3) ∈ S2, be the surface densities of the active
and inactive sites in the surface reaction, respectively. Assume that ui2 = s2θi2 and
ui1 = s1θi1, θi j (t, x) ∈ [0, 1], j = 1, 2, are the densities of the active and inactive
in reaction sites occupied by the adsorbed molecules of reactant Ai , i = 1, 2. Then
s j (1−θi j ), i, j = 1, 2, are the densities of the free sites. Since according to Langmuir
one molecule adsorbs on only one adsorption site, function ui j also present density
of molecules of reactant Ai adsorbed on sites of type j ( j = 1 for inactive sites,
j = 2 for active ones) that are located at point x . Assume that S2 = S22 ∪ S21 where
S22 = {(x1, x2, x3) : x1 ∈ [0, x∗), x2 = 0, x3 ∈ [0, l]} and S21 = {(x1, x2, x3) :
x1 ∈ (x∗, l], x2 = 0, x3 ∈ [0, l]}, x∗ ∈ (0, l), are planes consisting of the active and
inactive sites, respectively. Let ki j and k−i j be the adsorption and desorption rates
constants and let κi j , i, j = 1, 2, be the surface diffusivity of adsorbed particles of
reactant Ai on the surface S2 j . To simplify the model we restrict ourselves to the case
where densities s1 and s2 depend only on variable x1 and the initial values a0

1 and
a0

2 of concentrations a1 and a2 are constants. In this case we can reduce the three-
dimensional problem into two-dimensional one. Let λ1,i2, i = 1, 2, be the constant of
the jump rate via the catalyst-support interface x∗ of an adsorbed Ai particle from the
active position x∗ −0 into the nearest-neighbour vacant inactive site x∗ +0. Similarly,
let λ2,i1, i = 1, 2, be the constant of the jump rate via the catalyst-support of an
adsorbed Ai particle from the inactive position x∗ + 0 into the nearest-neighbour
vacant active site x∗ − 0.

To construct the model we employ the Langmuir–Hinshelwood (LH) mechanism

A1 + S
k1 j

�
k−1 j

A1S, A2 + S
k2 j

�
k−2 j

A2S, A1S + A2S
k3→ A1 A2 + 2S.

Here S is the adsorption site and k3 is the reaction between A1S and A2S rate constant
in LH step. In principle the product B = A1 A2 formation may occur via one or both
Eley–Rideal (ER) steps

A1 + A2S
k1→ A1 A2 + S, A2 + A1S

k2→ A1 A2 + S
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where k1 is the reaction between A1 and A2S rate constant and k2 is the reaction
between A2 and A1S rate one. Assuming that product desorption is instantaneous and
employing the LH and ER mechanisms we get the following system for densities ui j :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u11 = k11a1(s1 − u11 − u21) − k−11u11 + κ11
∂2u11
∂x2

1
, x1 ∈ (x∗, l),

∂t u21 = k21a2(s1 − u11 − u21) − k−21u21 + κ21
∂2u21
∂x2

1
, x1 ∈ (x∗, l),

∂t u12 = k12a1(s2 − u12 − u22) − k−12u12 − k3u12u22 − k2a2u12

+ κ12
∂2u12
∂x2

1
, x1 ∈ (0, x∗),

∂t u22 = k22a2(s2 − u12 − u22) − k−22u22 − k3u12u22 − k1a1u22

+ κ22
∂2u22
∂x2

1
, x1 ∈ (0, x∗),

(1)

Here ∂t signifies the partial derivative with respect to time. We add to this system the
initial

ui j (0, x1) = 0, i, j = 1, 2, (2)

and boundary conditions at points x1 = 0, x1 = x∗, and x1 = l,

⎧
⎪⎨

⎪⎩

∂u12

∂x1

∣
∣
∣
x1=0

= ∂u22

∂x1

∣
∣
∣
x1=0

= 0,

∂u11

∂x1

∣
∣
∣
x1=l

= ∂u21

∂x1

∣
∣
∣
x1=l

= 0,

(3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ11
∂u11

∂x1

∣
∣
∣
x∗+0

= κ12
∂u12

∂x1

∣
∣
∣
x∗−0

= λ2,11u11|x∗+0(s2 − u12 − u22)|x∗−0

− λ1,12u12|x∗−0(s1 − u11 − u21)|x∗+0,

κ21
∂u21

∂x1

∣
∣
∣
x∗+0

= κ22
∂u22

∂x1

∣
∣
∣
x∗−0

= λ2,21u21|x∗+0(s2 − u12 − u22)|x∗−0

− λ1,22u22|x∗−0(s1 − u11 − u21)|x∗+0.

(4)

The first terms (gain fluxes) on the right-hand side of Eq. (4) are conditioned by the
jumps via the catalyst-support interface x∗ of the escaped molecules of reactant Ai ,
i = 1, 2, form the inactive position, x∗ + 0, of the support to the nearest-neighbour
vacant active one, x∗ − 0, of the catalyst. Similarly, the other two terms (loss fluxes)
on the right-hand side of Eq. (4) are conditioned by the jumps via the catalyst-support
interface of the escaped molecules of the same reactant from the active position
x∗ − 0 of the catalyst to the nearest-neighbour vacant inactive one, x∗ + 0, of the
support.
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Diffusion of the reactants A1 and A2 toward the adsorbent and the product B from
the adsorbent away into the same vessel is described by the systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t a1 = κa1

(
∂2a1
∂x2

1
+ ∂2a1

∂x2
2

)

, (x1, x2) ∈ (0, l) × (0, l),

∂na1|S1 = 0,

∂na1 = −(k11a1(s1 − u11 − u21) − k−11u11)/κa1,

x1 ∈ (x∗, l), x2 = 0,

∂na1 = −(k12a1(s2 − u12 − u22) − k−12u12 + k1a1u22)/κa1,

x1 ∈ (0, x∗), x2 = 0,

a1(0, x) = a10(x),

(5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t a2 = κa2

(
∂2a2
∂x2

1
+ ∂2a2

∂x2
2

)

, (x1, x2) ∈ (0, l) × (0, l),

∂na2|S1 = 0,

∂na2 = −(k21a2(s1 − u11 − u21) − k−21u21)/κa2 ,

x1 ∈ (x∗, l), x2 = 0,

∂na2 = −(k22a2(s2 − u12 − u22) − k−22u22 + k2a2u12)/κa2 ,

x1 ∈ (0, x∗), x2 = 0,

a2(0, x) = a20(x),

(6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t b = κb

(
∂2b
∂x2

1
+ ∂2b

∂x2
2

)

, (x1, x2) ∈ (0, l) × (0, l),

∂nb|S1 = 0,

∂nb = (k3u12u22 + k1a1u22 + k2a2u12)/κb, x1 ∈ (0, x∗), x2 = 0,

∂nb = 0, x1 ∈ (x∗, l), x2 = 0,

b(0, x) = 0.

(7)

Here ∂n f , f = a1, a2, b, is the outward normal derivative. System (1)–(7) pos-
sesses two conservation laws

∫

Ω

(ai + b) dx +
x∗∫

0

ui2 dx1 +
l∫

x∗

ui1 dx1 =
∫

Ω

ai0 dx, i = 1, 2. (8)

Coupled system (1)–(7) determines densities ui j (or surface coverages θi j ) for all
x ∈ S2 and concentrations a1, a2, and b of reactants A1, A2 and product B for all
x ∈ Ω and t > 0.

We also study system (1)–(4) with given concentrations a1 and a2 at the surface
S2.

123



J Math Chem (2014) 52:1350–1363 1355

The main characteristic that we study is the surface S2 specific conversion rate of
the reactants molecules into the product ones (turn-over rate or turn-over frequency)
determined by the formula

z =
x∗∫

0

(k3u12u22 + k1a1u22 + k2a2u12) dx1

/
x∗∫

0

s2 dx1. (9)

Using the dimensionless variables t̄ = t/T , x̄i = xi/ l, āi = ai/a∗, s̄i = si/(la∗),
b̄ = b/a∗ k̄i j = ki j T a∗, k̄−i j = k−i j T , k̄3 = k3T , k̄i = ki T a∗, κ̄ai = κai T/ l2,
κ̄b = κbT/ l2, κ̄i j = κi j T/ l2, λ̄1, j2 = a∗T λ1, j2, λ̄2, j1 = a∗T λ2, j1, where i, j = 1, 2
and T, l, a∗ are the characteristic dimensional units, we rewrite Eqs. (1)–(8) in the
same form, but in dimensionless variables.

In what follows we study system (1)–(7) and Eqs. (1)–(4) with given values of a1,
a2 at the surface x2 = 0 in the following three adsorption cases of the reactants A1
and A2:

(i) each reactant can adsorb on both intervals [0, x∗) and (x∗, 1],
(ii) reactant A2 adsorbs on the interval [0, x∗), while the A1 adsorbs on the (x∗, 1],

(iii) both reactants adsorb only on the interval (x∗, 1].
Hence, in case (ii) we have k12 = k21 = 0, while in the case (iii) k12 = k22 = 0.

3 Numerical results

System (1)–(4) with given values of a1 and a2 at the surface S2 was solved numerically
using an implicit difference scheme. To solve system (1)–(7) numerically we used an
implicit difference scheme based on the alternating direction method [26]. For all
calculations we used the following dimensional data:

T = 1 s, l = 10−1 cm, a∗ = 10−11 mol cm−3,

s∗ = la∗ = 10−12 mol cm−2, ki j ∈ [109, 1011] cm3 mol−1 s−1,

k−i j , k ∈ [3 × 10−3, 1] s−1, κai , κb ∈ [5 × 10−7, 10−3] cm2 s−1. (10)

In the case where values of ki j , κi j , and λi, jn for all values of indices are equal, we use
k = ki j , κ = κi j , and λ = λi, jn for short. Of course, the case where ki j , κi j , and λi, jn

do not depend on values of indices is not realistic. However, it is useful for a study
of the interplay of many different physico-chemical processes. In calculations, we
used k3 = 0.1, k−i j = 1.66 × 10−3 and two different arrangements of the adsorption
sites s1 = s2 = 1 and s2 = s1(1/x∗ − 1), s1 = 1. In the first case of the adsorption
sites arrangement, the total numbers of the active and inactive sites for x∗ �= 0.5 are
different. In the second case, these numbers are equal, i.e.

∫ x∗
0 s2 dx1 = ∫ 1

x∗ s1 dx1.
Moreover, for x∗ = 0.5, s2 = s1 = 1 in the second case too. The model values of
dimensionless ki j , κi j , and λi, jn are given in the captions of figures. We first discuss
numerical results for system (1)–(4) with given values of a1 and a2 at the surface S2.
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Fig. 1 Influence of the active interval length x∗ and reaction rate constants, k1 and k2, in ER step on the
turnover rate z(t) determined by Eqs. (1)–(4) with a1 = a2 = 1 at the surface S2 for densities s1 = s2 = 1
(dashed line) and s1 = 1, s2 = s1(1/x∗ − 1) (solid line) in the case κ = 0.5, λ = 0.5, and k = 0.0166
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Fig. 2 Dependence of turnover rate z(t) determined by (1)–(4) with a1 = a2 = 1 at the surface S2 for
densities s1 = s2 = 1 (dashed line) and s1 = 1, s2 = s1(1/x∗ − 1) (solid line) on the parameters κi j ,
i, j = 1, 2, in the case λ = 0.5,k1 = k2 = 0, and k = 0.0166

3.1 Numerical results of system (1)–(4) with a1(t, x1, 0) = a2(t, x1, 0) = 1

Numerical results are presented in Figs. 1, 2, 3, 4 and 5.
Figure 1 illustrates the dependence of the turn-over rate z on the parameters s1, s2,

x∗, and k1 = k2 for the case where κ = λ = 0.5 and each reactant can adsorb on
both active and inactive intervals. In both cases of the s1 and s2 arrangement, Fig. 1
depicts a growth of the turn-over rate z as the size of the active interval, x∗, decreases
(at the same time the length of the inactive interval, 1 − x∗, grows). For uni-molecular
reactions this effect is studied in [2]. This figure also shows that incorporation of the
ER step for one or both reactants remarkably increases z compared to that determined
by the model involving only the LH mechanism.
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Fig. 3 Effect of increasing parameters λi, jn (a) and λ (b) on the turnover rate z(t) determined by (1)–(4)
with a1 = a2 = 1 at the surface S2 in the case k11 = k22 = 0.0166, k12 = k21 = 0, k1 = k2 = 0,
κ = 0.01, and s1 = s2 = 1

Figure 2 depicts the influence of the surface diffusivity κi j on the dynamics of z
for the case where the reactants A1 and A2 can adsorb on both active and inactive
intervals and k = 1.66 × 10−2, λ = 0.1, k1 = k2 = 0. From this figure we see that in
both cases of the distribution of s1 and s2 the increase of the diffusivity in the inactive
interval, κ11 = κ21, leads to the larger values of z compared to those corresponding to
the same increase of the diffusivity κ12 = κ22 in the active interval. Figs. 1 and 2 also
shows that values of z for s2 = s2(1/x∗ − 1), s1 = 1 are much more larger than those
corresponding to the case s1 = s2 = 1.

Figures 3a, b present the dependence of z on λi, jn and λ, respectively, for κ = 0.01,
k1 = k2 = 0, k11 = k22 = 1.66 × 10−2 in the case where A1 adsorbs on (0, x∗) and
A2 on (x∗, 1), i.e. k12 = k21 = 0. From Fig. 3a we observe that the increase of λ2,21 or
λ2,11 increases values of z for small t . For large t the turn-over rate behaves vice-versa.
Figure 3b shows that the steady-state value of z depending on λ possesses a maximum
value at some λ∗, e.g. λ∗ ≈ 0.055.
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Fig. 4 Effect of increasing parameters λi, jn on the turnover rate z(t) determined by (1)–(4) with a1 =
a2 = 1 at the surface S2 for densities s1 = s2 = 1 in the case k11 = k21 = 0.0166, k12 = k22 = 0, and
k1 = k2 = 0, κ = 0.01
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Fig. 5 Dependence of the turnover rate z(t) determined by Eqs. (1)–(4) with a1 = a2 = 1 at the surface
S2 on the parameters κi j and ki j , i, j = 1, 2, in the case s1 = s2 = 1, k1 = k2 = 0 and λ = 0.1.
k11 = k22 = 0.0166, k12 = k21 = 0—solid line, k11 = k21 = 0.0166, k12 = k22 = 0—dashed line,
k11 = k12 = k21 = k22 = 0.0166—short dashed line

Figure 4 depicts the dependence of z on λi, jn for k1 = k2 = 0 and k11 = k21 =
1.66 × 10−2 in the case where both reactants adsorb on the inactive interval (x∗, 1),
i.e. k12 = k22 = 0. We observe that, for all t > 0, z increases as the jump rates,
λ2,11 = λ2,21, of both reactants from the inactive position x∗ +0 into the active vacant
location x∗ − 0 grows. Curves 3 and 4 show that this behaviour of z is not true if only
the jump rate λ2,21 of reactant A2 increases.

In Fig. 5, we compare dynamics of z for λ = 0.1 and k1 = k2 = 0 in all three
adsorption cases of reactants A1 and A2 (k = 1.66 × 10−2; k12 = k21 = 0, k11 =
k22 = 1.66×10−2; k12 = k22 = 0, k11 = k21 = 1.66×10−2). In each case we compare
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the turn-over rate z corresponding to κ = 0.01; κ11 = κ21 = 0.01, κ12 = κ22 = 0.1;
and κ11 = κ21 = 0.1, κ12 = κ22 = 0.01. We observe a similar behaviour of z in cases
where A1 and A2 adsorb only on the inactive interval or were each reactant adsorbs
on both intervals. Figure 5 shows that in these two adsorption cases the increase of the
diffusivity κ11 = κ21 in the inactive interval determines larger values of z compared
to those corresponding to the same increase of the reactants diffusivity κ12 = κ22 in
the active interval. In the case where A1 adsorbs on the inactive interval and A2 on the
active one, the increase of the diffusivity κ11 = κ21 in the inactive interval decreases z
and determines values of z that are smaller those corresponding to the same increase
of the diffusivity κ12 = κ22 in the active interval (see solid lines in this figure).

3.2 Numerical results of system (1)–(7)

Numerical results are presented in Figs. 6, 7, 8 and 9.
Figure 6 depicts the increase of z as x∗ decreases in the case k = 1.66 × 10−2,

k1 = k2 = 0, κ = λ = 0.5. This result is similar to that illustrated in Fig. 1 for system
(1)–(4) with given a1 = a2 = 1 at the surface S2.

From Fig. 7 we see that, for k = 1.66 × 10−2, k1 = k2 = 0, κ = 0.01 and small t ,
the increase of λ increases z. For large t , function z behaves vice-versa. Similarly, for
λ = 0.01 and small t , function z increases as κ grows but, for large t , its behaviour is
opposite. Moreover, for large t , z decreases to zero, because concentrations a1(t, x)

and a2(t, x) tend to zero. For comparison we also present dynamics of z determined
by Eqs. (1)–(4) with given a1 and a2 at the surface S2. In this case z increases for all
t > 0 as λ or κ increases.

Figure 8 presents the comparison of z dynamics for λ = 0.1 and k1 = k2 = 0
in three adsorption cases of A1 and A2. If each reactant adsorbs on both active and
inactive interval or both reactants adsorb only on the inactive interval then, for small t ,
the increase of diffusivity κ11 = κ21 of both reactants in the inactive interval increases
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Fig. 6 Influence of the active interval length x∗ on the turnover rate z(t) determined by system (1)–(7) with
densities a0

1 (x1, x2) = a0
2 (x1, x2) = 1 and s1 = s2 = 1 in the case k1 = k2 = 0, κ = 0.5 and λ = 0.5
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Fig. 7 Dependence of the turnover rate z(t) determined by Eqs. (1)–(4) with a1(t, x1, 0) = a2(t, x1, 0) = 1
(dashed line) and by system (1)–(7) with densities a0

1(x1, x2) = a0
2 (x1, x2) = 1 (solid line) on parameters

κ and λ in the case s1 = s2 = 1 and k1 = k2 = 0
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Fig. 8 Effect of increasing parameters ki j and κi j , i, j = 1, 2, on the turnover rate z(t) determined by

system (1)–(7) with densities a0
1 (x1, x2) = a0

2 (x1, x2) = 1 and s1 = s2 = 1 in the case k1 = k2 = 0 and
λ = 0.1. κ11 = κ21 = 0.1, κ12 = κ22 = 0.01—solid line, κ11 = κ12 = κ21 = κ22 = 0.01—dashed line

z. For large t , its influence is opposite. Simulations show that the increase of the
diffusivity κ12 = κ22 of both reactants in the active interval also increases z for small
t but this increase is smaller than that corresponding to the same diffusivity increase
in the inactive interval. Curve 5 in this figure corresponds to the case where A1 and
A2 adsorb on the inactive and active interval, respectively. For small t , values of z are
smaller than those corresponding to the other two adsorption cases, but for large t its
values are larger.

In Fig. 9, we compare the total amount of product B at time t , Ib = ∫ 1
0 dx1

∫ 1
0 b dx2,

for k = 0.1, κ = 0.5, λ = 0.5 in cases where s1 = s2 = 1; s2 = s1(1/x∗ − 1), s1 = 1
and x∗ = 0.1, 0.2, 0.4. In the case s1 = s2 = 1, function Ib grows as x∗ increases,
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Fig. 9 Dependence of the total amount of the product Ib on the active interval length x∗ in the case
a0

1 (x1, x2) = a0
2 (x1, x2) = 1, k1 = k2 = 0, k = 0.1, and λ = 0.5, κ = 0.5. s1 = s2 = 1—dashed line,

s1 = 1, s2 = s1(1/x∗ − 1)—solid line

but, in the other one, Ib decreases as x∗ increases. In both cases of the s1 and s2
distribution, values of Ib coincide for x∗ = 0.5.

4 Conclusions

To conclude the paper, we summarise the main results. In this paper, using a phe-
nomenological (mean-field) model in two-dimensional space we studied numerically
bimolecular surface reactions proceeding on supported catalysts coupled with both
reactants and product bulk diffusion in a bounded impermeable vessel. The model
includes the adsorption, desorption, surface diffusion of adsorbed particles of each
reactant, and rapid product desorption from the surface. Two different arrangements
of adsorption sites were used and three cases of both reactants adsorption on them are
considered: (i) each reactant can adsorb on both active catalyst particle and inactive
support, (ii) one of the reactants A1 and A2 adsorbs on the catalyst particle while the
other one adsorbs on the inactive in reaction support, (iii) both reactants adsorb only
on the inactive support.

Inactive in reaction sites, due to possibility of adsorption of at least one of reactants
and diffusion of adsorbed particles on them, constitute an additional (to the adsorption)
channel transporting particles onto active ones. In case (i) of reactants adsorption, we
have the adsorption channel of both reactants and the spillover one of both reactants
from the inactive interval onto the active one. In case (ii), we have the adsorption
channel of reactant A2 and the spillover one of A1. At last, in case (iii), both reactants
are transported onto active interval by the spillover channel.

The main characteristic we studied was the catalyst particle specific conversion rate
(turn-over rate) of molecules of both reactants into the product ones. We analysed the
effects of spillover on the turn-over rate under different conditions and demonstrated
that:
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1. The ER step remarkably increases the turn-over rate z compared to that corre-
sponding to only one LH mechanism. Function z determined by system (1)–(4)
with given values of a1 and a2 at the surface S2 is monotonic in time for k1 = k2 ≥ 0
and non-monotonic if only one of k1 and k2 is zero.

2. The size of the active interval strongly influence the turn-over rate. In both cases
of active sites arrangement, z determined by Eqs. (1)–(4) with given a1 and a2
at the surface S2 or system (1)–(7) grows as size x∗ decreases. Moreover, values
of z corresponding to the case s2 = s1(

1
x∗ − 1), s1 = 1 are larger than those

corresponding to the case s1 = s2 = 1.
3. The increase of at least one of diffusion coefficients κi j increases z determined by

system (1)–(7) or Eqs. (1)–(4) with given concentrations a1 and a2 at the surface
S2.

4. In the case where one of reactants adsorbs on the inactive interval and the other on
the active one, s1 = s2, and k1 = k2 = 0, the steady-state value of z determined by
system (1)–(4) with given a1 = a2 at the surface S2 possesses a maximum at some
value λ∗, e.g. λ∗ ≈ 0.055 for k11 = k22 = 0.0166, k12 = k21 = 0, κ = 0.01.

5. In the case, where both reactants adsorb only on the inactive support, the turn-over
rate z is a monotonically increasing function in time.

6. z determined by system (1)–(7) is non-monotonic in time. It attains a maximum
value and then tends to zero as time grows. Moreover, z grows only for small t as
κ , κ11 = κ21, or λ increase and behaves vice versa for large t .

7. Values of the total amount of product B for s1 = s2 = 1 monotonically increase as
size of the active interval, x∗, grows and decrease for s2 = s1(1/x∗ − 1), s1 = 1.

Results of simulations let us to think that the phenomenological model presented here
is able to describe qualitatively processes that proceed at constant temperature during
monomer–monomer reactions on supported catalysts.
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